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Andy Zucker

October 2013

In this note we will discuss the topological groups that naturally arise when consider-
ing countable Fräıssé categories. We will also characterize when two categories give rise
to isomorphic topological groups.

1 Amalgamation of Categories

A countable category is a category A with Arr(A) countable; in particular, this implies
that Ob(A) is countable. A category A is directed if for every a, b ∈ Ob(A), there is
c ∈ Ob(A) with Hom(a, c) and Hom(b, c) non-empty. For any two arrows f , g with
common domain, we say that (r, s) amalgamates (f, g) if r ◦f = s◦g; the category A has
amalgamation if all pairs of arrows with common domain can be amalgamated. A subset
X ⊂ Ob(A) is cofinal if for each a ∈ Ob(A), there is x ∈ X with Hom(a, x) non-empty.
For any two categories A, B, we write A

∼−→ B if there is a full, faithful functor from A to
B which is injective on objects and whose image is cofinal in B. We will often call such a
functor a cofinal embedding. Observe that the composition of two cofinal embeddings is
itself a cofinal embedding, allowing us to give any set of categories a category structure.
In what follows, any category whose objects are categories will use cofinal embeddings
as the arrows unless explicitly stated otherwise.

Consider then the category C of countable, directed categories. For A,B ∈ Ob(C),
write A ∼ B if there is C ∈ Ob(C) with Hom(A,C) and Hom(B,C) non-empty. The rela-
tion∼ is certainly reflexive and symmetric. Transitivity is not obvious; letA,B,C,D,E ∈
Ob(C) and suppose α ∈ Hom(A,D), β ∈ Hom(B,D), γ ∈ Hom(B,E), δ ∈ Hom(C,E).
If we could find (ϕ, ψ) amalgamating (β, γ), then letting F be the common image of ϕ, ψ,
we would have ϕ ◦ β ∈ Hom(A,F ), ψ ◦ γ ∈ Hom(C,F ).
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Theorem 1.1. The category C has amalgamation. In particular, ∼ is an equivalence
relation.

Proof. Suppose ϕ and ψ are cofinal embeddings of A into B and C, respectively. It will
be simpler to identify A with its image in each case, so that we may think of A as a
full, cofinal subcategory of both B and C. We will build a category D containing B and
C such that the containments are cofinal embeddings which witness amalgamation. We
set Ob(D) = Ob(B) ∪ Ob(C). As we want the inclusions to be full embeddings, we set
HomD(a, b) = HomB(a, b) for any two objects a, b ∈ Ob(B), similarly for a, b ∈ Ob(C).

It remains to define Hom(b, c) when b ∈ Ob(B) \ Ob(A) and c ∈ Ob(C) \ Ob(A),
or vice versa. We let Hom(b, c) consist of all pairs f1 · f0 with f0 ∈ Hom(b, a) and
f1 ∈ Hom(a, c) for any a ∈ Ob(A); we set f1 ◦ f0 = f1 · f0. If a1, a2 ∈ Ob(A) and
f ∈ Hom(b, a1), g ∈ Hom(a1, a2), h ∈ Hom(a2, c) we declare that h · (g ◦ f) = (h ◦ g) · f ;
this ensures that the resulting category is associative. We define composition as follows:
If g ∈ Hom(d, b) for d ∈ Ob(B), we set (f1 · f0) ◦ g = f1 ◦ (f0 ◦ g) (note that this is
defined whether or not d ∈ Ob(A)). Similarly if h ∈ Hom(c, e) for e ∈ Ob(C), we set
h ◦ (f1 · f0) = (h ◦ f1) ◦ f0. If δ ∈ Ob(B) \Ob(A) and we have g1 · g0 ∈ Hom(c, δ), we set
(g1 · g0) ◦ (f1 · f0) = g1 ◦ (g0 ◦ f1) ◦ f0.

We need to verify that composition is well defined; we will verify one instance here, as
others are similar to show. Suppose f1 · f0 = g1 · g0 ∈ Hom(b, c) and h1 · h0 ∈ Hom(c, d),
with b, d ∈ Ob(B) \ Ob(A) and c ∈ Ob(C) \ Ob(A). By repeated application, it is
enough to consider the case where g0 ∈ Hom(b, a1), p ∈ Hom(a1, a2), f1 ∈ Hom(a2, c),
and f0 = p ◦ g0, g1 = f1 ◦ p. Then we have

h1 ◦ (h0 ◦ f1) ◦ f0 = h1 ◦ [(h0 ◦ f1) ◦ (p ◦ g0)]
= h1 ◦ [((h0 ◦ f1) ◦ p) ◦ g0]
= h1 ◦ [(h0 ◦ (f1 ◦ p)) ◦ g0]
= h1 ◦ (h0 ◦ g1) ◦ g0.

D is certainly countable. To see that it is directed, say b ∈ Ob(B) and c ∈ Ob(C).
By cofinality of A, pick a1, a2 ∈ Ob(A) and f ∈ Hom(b, a1), g ∈ Hom(c, a2). As A is
directed, we are done. As an added bonus, note that if A,B,C all have amalgamation,
then so does D. Without loss of generality pick b ∈ Ob(B), and let f1, f2 have domain
b. By cofinality of A, we can find g1, g2 such that gi ◦ fi has range in A. Now use
amalgamation in B.

2 Monicity

A category A is Fräıssé if A is directed and has amalgamation. We will see shortly
that each countable Fräıssé category A gives rise to a topological group G(A), the au-
tomorphism group of any Fräıssé sequence in A. It is our goal to characterize when
G(A) = G(B); we will find that up to a certain closure operator on countable Fräıssé
categories, this occurs when A ∼ B. More precisely, we will define the closure Ā of any

2



countable Fräıssé category A such that G(A) = G(B) exactly when Ā ∼ B̄. The closure
operator can be though of as occurring in two steps. Morally speaking, the first step
identifies arrows which “ought” to be the same. The second step then introduces arrows
which “ought” to be present. We will tackle the first step now.

A category is monic if for all arrows, x◦ f = x◦ g ⇒ f = g. For A a Fräıssé category,
define the relation M on arrows where M(f, g) iff there is x with x ◦ f = x ◦ g.

Proposition 2.1. The relation M is an equivalence relation which respects composition.

Hence the first step of our closure operation will be forming the category A/M , which
will be called the monic closure.

Proof. Suppose M(f, g) and M(g, h) as witnessed by arrows x, y respectively. Observe
that x and y have common domain; let (r, s) amalgamate (x, y). Then r◦x◦f = r◦x◦g =
s ◦ y ◦ g = s ◦ y ◦ h = r ◦ x ◦ h. Hence M(f, h). Now suppose M(f0, f1) and M(g0, g1)
as witnessed by p, q, respectively. Further suppose that Ran(fi) = Dom(gi). We want
to show that M(g0 ◦ f0, g1 ◦ f1). Let (r, s) amalgamate (p, q ◦ g0). Then s ◦ q ◦ g0 ◦ f0 =
r ◦ p ◦ f0 = r ◦ p ◦ f1 = s ◦ q ◦ g0 ◦ f1 = s ◦ q ◦ g1 ◦ f1.

Proposition 2.2. The quotient A/M is a monic Fräıssé category.

Proof. Given an arrow f ∈ Arr(A), let Mf denote its M equivalence class. For a, b ∈
Ob(A) = Ob(A/M), let f ∈ HomA(a, c) and g ∈ HomA(b, c). Then Mf ∈ HomA/M(a, c)
and Mg ∈ HomA/M(b, c). Thus A/M is directed. Now let a, b, c be objects and F ∈
HomA/M(a, b), G ∈ HomA/M(b, c). Pick representatives f ∈ F , g ∈ G, and let (r, s)
amalgamate (f, g) in A. Then (Mr,Ms) amalgamates (Mf,Mg) = (F,G) in A/M .
Hence A/M has amalgamation. Lastly, suppose X ◦ F = X ◦ G. Pick representatives
x, f, g. Then M(x ◦ f, x ◦ g), so for some y, we have y ◦ x ◦ f = y ◦ x ◦ g. Hence M(f, g)
and F = G, showing that A/M is monic.

We also want to show A ∼ B implies A/M ∼ B/M . It is enough to show the
following.

Proposition 2.3. Suppose A,B are Fräıssé categories and A
∼−→ B. Then A/M

∼−→
B/M .

Proof. Identify A with its image in B. Let a, b ∈ Ob(A) and suppose MB(a, b) as wit-
nessed by x ∈ Arr(B). By cofinality of A, find y with y◦x ∈ Arr(A). Then y◦x witnesses
MA(a, b).

3 Localization

Let A be a monic Fräıssé category, and suppose f, g ∈ Arr(A) have common range. We
say that g stabilizes f , or that f is g-stable, if for any arrows p1, p2 with p1 ◦ g = p2 ◦ g,
we have p1 ◦f = p2 ◦f . We say that (g, f) is a stable pair. The prototypical example of a
stable pair is any pair of the form (g, g ◦ x). The idea behind forming the localization of
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A is that these should be the only examples of stable pairs. In particular, if f is g-stable
and we cannot write f = g ◦x, we want to introduce a map g−1f such that g ◦ g−1f = f .

When is it the case that g−11 f1 = g−12 f2? Certainly the gi must have common domain,
as well as the fi. So let (r, s) amalgamate (g1, g2). Then assuming the above equality, we
find that r ◦f1 = s◦f2, i.e. (r, s) also amalgamates (f1, f2). This motivates the following.

Definition 3.1. We say that g−11 f1
.
= g−12 f2 iff for any (r, s) amalgamating (g1, g2), we

also have that (r, s) amalgamates (f1, f2).

Proposition 3.2.
.
= is an equivalence relation on stable pairs.

Proof. Certainly
.
= is symmetric. If f is g-stable, then by definition g−1f

.
= g−1f . To

show transitivity, suppose g−11 f1
.
= g−12 f2 and g−12 f2

.
= g−13 f3. Say (r, s) amalgamates

(g1, g3). Let (x, y) amalgamate (r ◦ g1, g2) = (s ◦ g3, g2). It follows that (x ◦ r, y) amalga-
mates (g1, g2), and (x◦ s, y) amalgamates (g3, g2). By assumption, (x◦ r, y) amalgamates
(f1, f2) and (x ◦ s, y) amalgamates (f3, f2). But now we have x ◦ r ◦ f1 = x ◦ s ◦ f3. By
monicity, we are done.

The localization Ā will have Ob(Ā) = Ob(A), and Arr(Ā) will consist of all equiva-
lence classes of stable pairs. If f ∈ Arr(A) has range a ∈ Ob(A), we will often identify
f with the pair (1a, f) ∈ Arr(Ā). Now for composition; how do we define π−1h ◦ g−1f?
Let’s try the following: let (r, s) amalgamate (g, h). Since (g, f) and (π, h) are both
stable pairs, it follows that r ◦ f is (s ◦ π)-stable. Define π−1h ◦ g−1f = (s ◦ π)−1(r ◦ f).

• • •

• •

•

•
f r

g

h

s

π

p1, p2

We need to check that this respects
.
= and is independent of the choice of (r, s).

So say g−11 f1
.
= g−12 f2 and π−11 h1

.
= π−12 h2; furthermore, suppose (r1, s1) amalgamates

(g1, h1) and (r2, s2) amalgamates (g2, h2). We need to show that (s1 ◦ π1)−1(r1 ◦ f1)
.
=

(s2 ◦π2)−1(r2 ◦f2). So let (u, v) amalgamate (s1 ◦π1, s2 ◦π2). We need to show that (u, v)
amalgamates (r1 ◦ f1, r2 ◦ f2), i.e. that u ◦ r1 ◦ f1 = v ◦ r2 ◦ f2.

u ◦ s1 ◦ π1 = v ◦ s2 ◦ π2
⇒ u ◦ s1 ◦ h1 = v ◦ s2 ◦ h2 (π−11 h1

.
= π−12 h2)

⇒ u ◦ r1 ◦ g1 = v ◦ r2 ◦ g2
⇒ u ◦ r1 ◦ f1 = v ◦ r2 ◦ f2 (g−11 f1

.
= g−12 f2).
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Draw a large commutative diagram to convince yourself that composition is associa-
tive. We say a category A is stable if for all g ∈ Arr(A), the only g-stable maps are of
the form g ◦ x.

Proposition 3.3. If A is a monic Fräıssé category, then Ā is a monic, stable Fräıssé
category.

Proof. It is easy to see that Ā is a Fräıssé category. For monicity, it is enough to show that
x ◦ g−11 f1

.
= x ◦ g−12 f2 implies g−11 f1

.
= g−12 f2. Say (u, v) amalgamates (g1, g2). Let (r, s)

amalgamate (u◦g1, x). Notice that x◦g−11 f1 = s−1(r◦u◦f1) and x◦g−12 f2 = s−1(r◦v◦f2).
From our assumption, we find that r ◦ u ◦ f1 = r ◦ v ◦ f2, and we are done by monicity
of A.

• •

• •

• ••

x

s

r

g1 g2

u v

f1 f2

As for stability, note that if h is g−1f -stable, then g ◦ h is f -stable, and we have
(g−1f)−1h = f−1(g ◦ h); if g−1f is h-stable, then f is g ◦ h-stable, and h−1(g−1f) =
(g ◦h)−1f . It becomes slightly more interesting to see what happens when π−1h is g−1f -
stable. Pick (r, s) amalgamating (π, g); then g ◦ (π−1h) = s−1(r ◦ h). We find that r ◦ h
is (s ◦ f)-stable, and indeed, one can verify that (g−1f)−1(π−1h) = (s ◦ f)−1r ◦ h.

Note that if A is countable, then so is Ā.

Proposition 3.4. If A,B are monic, Fräıssé categories and A
∼−→ B, then Ā

∼−→ B̄.

Proof. Identify A with its image under a cofinal embedding. Let f, g ∈ Arr(A) have
common range, and say f is g-stable in A. Suppose for pi ∈ Arr(B) we have p1◦g = p2◦g.
By cofinality, find x with x◦pi ∈ Arr(A). Then by stability we have x◦p1 ◦f = x◦p2 ◦f ,
and by monicity, we see that f is g-stable in B.

4 Topological Groups

Let us start by reviewing some of the basic ideas about Fräıssé sequences in the countable
case; for a more detailed exposition, see [K]. As an example to keep in mind, let G be
the class of finite graphs, i.e. it is the category whose objects are finite graphs and whose
arrows are embeddings. Here we use embedding in the model-theoretic sense: f : H → G
is an embedding iff f is an injection with E(u, v)⇔ E(f(u), f(v)).

We can consider the ordinal ω as a category whose objects are the finite ordinals and
whose morphisms are inclusions. Given a category C, a sequence is a functor u : ω → C.
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We will write un for u(n), and for n ⊆ m, we write umn for u(imn ). In G, this is a sequence
of graphs Gn and embeddings Gn+1

n : Gn → Gn+1 which, by identifying each Gn with its
image in Gn+1, we may assume are inclusions. It is useful to think of this sequence as
building a countably infinite graph ∪nGn.

For an object a, an arrow a → ~u is an equivalence class of arrows a → ui; for
f ∈ Hom(a, ui), g ∈ Hom(a, uj), we say (f, i) ≈ (g, j) if there is k with uki ◦ f = ukj ◦ g.
Equivalence classes will be denoted by [f, i], or just [f ] if there is no confusion. In G, an

arrow H → ~G is an embedding of H into ∪nGn. This also makes the role of ≈ clear; if
g : H → Gn and h = Gm

n ◦ g, then g and h give the same embedding of H into ∪nGn.
Given two sequences ~u,~v, a transformation is a natural transformation ϕ : ~u→ ~v ◦π,

where π : ω → ω is a functor. We will often abuse notation by identifying ϕ and π and
writing ϕ : ~u → ~v; this way we can simply write ϕi ∈ Hom(ui, vϕ(i)). Therefore we can
think of ϕ as consisting of maps ϕi such that the following diagram commutes.

u0 u1 u2 · · ·

vϕ(0) vϕ(1) vϕ(2) · · ·

ϕ0 ϕ1 ϕ2

We will most often consider the case ~u = ~v. If ϕ, ψ : ~u → ~u are transformations; we
say ϕ ≈ ψ iff for all i we have (ϕi, ϕ(i)) ≈ (ψi, ψ(i)). We will also denote these equivalence
classes by [ϕ]. Composition of transformations is defined in the obvious way; if ϕ, ψ are
transformations, then we set (ψ◦ϕ)i = ψϕ(i)◦ϕi. It is quick to check that this respects ≈.
We can now define Aut(~u) to be the group of invertible arrows. In G, a transformation

ϕ : ~G→ ~G is just an embedding of ∪nGn into ∪nGn, and Aut(~G) = Aut(∪nGn).
Now suppose C is a countable Fräıssé category; a Fräıssé sequence is a sequence ~u

which satifsies the following two properties:

• Cofinality: for each a ∈ Ob(C), there is i ∈ N with Hom(a, ui) nonempty.

• Extension Property (EP): for any arrows f ∈ Hom(a, ui), g ∈ Hom(a, b), there is
j ∈ N and h ∈ Hom(b, uj) with uji ◦ f = h ◦ g.

It is a fact that in countable Fräıssé categories, Fräıssé sequences exist and furthermore
satisfy the back and forth property : let ~u,~v be Fräıssé sequences in a Fräıssé category C.
Then for any arrows f ∈ Hom(a, ui), g ∈ Hom(a, vj), there is an isomorphism ϕ : ~u→ ~v
such that for some k, vkϕ(i) ◦ ϕi ◦ f = vkj ◦ g. In particular, any two Fräıssé sequences are
isomorphic.

If ~G is a Fräıssé sequence in G, then ∪nGn ≡ G is the Rado graph, often called the
random graph. We can think of G as being built by taking a countably infinite number
of vertices and flipping a fair coin for each pair to determine whether or not an edge
is present. G is the unique countable graph up to isomorphism which embeds every
finite graph and which satisfies the (EP): for all n,m ∈ N and any distinct vertices
x1, ..., xn, y1, ..., ym, there is a vertex v distinct from the xi, yj with E(v, xi) and ¬E(v, yj)
for 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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Our aim is to give Aut(~u) the structure of a topological group. To do this, let us more
closely investigate the action of transformations on arrows a → ~u. For f ∈ Hom(a, ui),
we write ϕ(f) ≡ ϕi ◦ f .

Proposition 4.1. Say f ∈ Hom(a, ui), g ∈ Hom(a, uj) with (f, i) = (g, j), and suppose
ϕ ≈ ψ are transformations. Then (ϕ(f), ϕ(i)) ≈ (ψ(g), ψ(j)). Conversely, if ϕ, ψ are
transformations such that ϕ(a) ≈ ψ(b) whenever a ≈ b, we have ϕ ≈ ψ.

Proof. Say uki ◦f = ukj ◦g and ulϕ(k)◦ϕk = ulψ(k)◦ψk. We find that ϕk ◦uki ◦f ≈ ψk ◦ukj ◦g.

As ϕk ◦ uki = u
ϕ(k)
ϕ(i) ◦ϕi and ψk ◦ ukj = u

ψ(k)
ψ(j) ◦ψj, we have ϕ(f) ≈ ψ(g) as desired. For the

converse, apply the assumption to uii.

Corollary 4.2. If ϕ ∈ Aut(~u), then ϕ permutes the arrows a→ ~u.

We can now view Aut(~u) as a subgroup of S∞, the permutations of a countable set.
S∞ is a topological group with the topology of pointwise convergence; this allows us to
give Aut(~u) the subspace topology. More explicitly, a countable neighborhood basis of
open subgroups at the identity is given by {ϕ ∈ Aut(~u) : ϕ([uii]) = [uii]}i∈N.

Proposition 4.3. If C is a countable Fräıssé category and ~u and ~v are two Fräıssé
sequences in A, the resulting topological groups are homeomorphic.

Proof. Let ψ : ~u→ ~v be an isomorphism; then the map ϕ→ ψ◦ϕ◦ψ−1 is an isomorphism
Aut(~u)→ Aut(~v). Suppose ϕ(n) → ϕ in the topology of Aut(~u). This means that for each
arrow f : a→ ~u, there is N ∈ N such that for any n > N , we have ϕ(n)(f) = ϕ(f). But
then we have ψ◦ϕ(n)◦ψ−1(ψ(f)) = ψ◦ϕ◦ψ−1(ψ(f)); hence ψ◦ϕ(n)◦ψ−1 → ψ◦ϕ◦ψ−1.

Given a countable Fräıssé category C, we may now associate to it a unique topological
group G(C). Before continuing, it is worthwhile to look at the existing examples of
topological groups arising from Fräıssé categories. The standard example of course is
when the category C is a Fräıssé class such as our running example G. Our requirements
that a Fräıssé category be directed and have amalgamation then become the familiar Joint
Embedding Property (JEP) and the Amalgamation Property (AP). The groupG(C) is just
the automorphism group of the Fräıssé limit with the pointwise convergence topology (see
[Ho]). In this way we see that each closed subgroup of S∞ is a G(C) for some countable
category C (we will see shortly that G(C) is always closed).

A more interesting example comes from the projective Fräıssé theory of Irwin and
Solecki [IS]. Fix a countable language L; a projection of L-models p : B → A is a
surjection p : B → A such that p(fB(x1, ..., xn)) = fA(p(x1), ..., p(xn)) for each function
symbol f ∈ L and RA(y1, ..., yn)⇔ ∃(x1, ..., xn)[p(x1, ..., xn) = (y1, ..., yn)∧RB(x1, ..., xn)]
for each relation symbol R ∈ L. To turn a class of finite models into a Fräıssé category
using projections for arrows, we reverse direction: each projection p : B→ A corresponds
to an arrow p ∈ Hom(a, b).

Given a Fräıssé sequence ~A in a projective Fräıssé class K, we can form the projective
Fräıssé limit K ≡ lim←−(An, A

m
n ), a topological L-structure whose underlying set is the

set-theoretic inverse limit of the sequence. For α1, ..., αn ∈ K and f ∈ L a function
symbol, we set fK(α1, ..., αn) = β for the unique β with fAk(α1(k), ..., αn(k)) = β(k) for
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each k ∈ N. For R ∈ L a relation symbol, we set RK(α1, ..., αn) iff RAk(α1(k), ..., αn(k))

for each k ∈ N. Each fK is continuous, and each RK is closed. Automorphisms of ~A
are exactly the structure-preserving homeomorphisms of K. However, there is already
a natural topology to put on the group of homeomorphisms, namely the compact-open
topology. As K is a zero-dimensional Hausdorff space, a subbase for this topology is
given by sets of the form V (U1, U2) ≡ {ϕ ∈ Homeo(K) : ϕ(U1) ⊆ U2} with each Ui
clopen.

Proposition 4.4. Let C be a countable Fräıssé category which is also a projective Fräıssé
class K. Let K = lim←−(An, πn) be the projective Fräıssé limit. Then G(C) ∼= Homeo(K)
when Homeo(K) is given the compact-open topology.

Proof. A subbase for the topology on G(C) is given by sets of the form W (p1, p2) ≡ {ϕ ∈
Homeo(K) : p1 ◦ ϕ = p2}, where the pi are projections K → A for some A ∈ K. Then
we see that W (p1, p2) is exactly the intersection of open sets V (p−11 (a), p−12 (a)) for each
a ∈ A. Conversely, fix U1, U2 clopen and consider V (U1, U2). As the Ui are clopen, we
may find An ∈ K such that there are Si ⊆ An with (A∞n )−1(Si) = Ui, where A∞n is the
natural projection K→ An. Now we see that V (U1, U2) is the union of open sets of the
form W (A∞n , p), where p is any projection K→ An with p(U1) ⊆ S2.

Proposition 4.5. Suppose A
∼−→ B are countable Fräıssé categories. Then G(A) ∼= G(B).

Proof. We will show instead on A that if ϕ(n) converges to ϕ on all arrows of the form
ui → ~u, then ϕ(n) converges to ϕ on all arrows. To see this, let [f ] : a→ ~u be an arrow;
pick a representative f : a→ ui. By assumption, ϕ(n) is eventually constant on the arrow
[uii]. It follows that ϕ(n) is eventually constant on [f ]. As any Fräıssé sequence for A is
also a Fräıssé sequence for B, we are done.

Proposition 4.6. For C a countable Fräıssé category, G(C) is a closed subgroup of S∞.

Proof. Suppose ϕ(n) converges pointwise to a permutation of all arrows a → ~u. Write
ψ(n) ≡ (ϕ(n))−1. Note that ψ(n) also converges pointwise. Pick ϕ(1) ∈ N and ϕ1 : u1 →
uϕ(1) such that [ϕ1] = ϕ(n)([u11]) for sufficiently large n. Inductively Pick ϕ(k) > ϕ(k− 1)

and an arrow ϕk : uk → uϕ(k) with [ϕk] = ϕ(n)([ukk]) for large n. Note that u
ϕ(k)
ϕ(j) ◦ ϕj =

ϕk ◦ ukj for j < k. We build ψ ≡ ϕ−1 in the exact same way.

Proposition 4.7. For C a countable Fräıssé category, G(C) ∼= G(C̄).

Proof. Naturally, this proof will be done in two steps. We first show that G(C) ∼=
G(C/M); then assuming C is monic, we show that G(C) ∼= G(C̄). First, note that
the map [f ] → [Mf ] is a bijection. For suppose [Mf ] = [Mg]; then there is k with
Muki ◦Mf = Mukj ◦Mg. Thus there is y with y ◦uki ◦ f = y ◦ukj ◦ g. Using the extention
property, we are done.

Much in the same way, we can show that the map [ϕ] → [Mϕ] is an injection; the
action of [Mϕ] on the arrows [Mf ] is identical to the action of [ϕ] on arrows [f ]. It only
remains to show that this map is surjective. So assume ψ is an automorphism of ~u in
C/M . We will build an automorphism ϕ of ~u in C such that Mϕ ≈ ψ. Choose yi ∈ ψi,
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i ∈ ω. Then for each i < j there is x(i, j) with x(i, j) ◦uψ(j)ψ(i) ◦ yi = x(i, j) ◦ yj ◦uji . By the

extention property, we can find k(i, j) ∈ ω and w(i, j) with w(i, j)◦x(i, j) = u
k(i,j)
ψ(j) . Define

ϕj = u
k(j)
ψ(j) ◦ yj, where k(0) = ψ(0), and for j > 0, k(j) = max(k(i, j)i<j, (k(i) + 1)i<j).

Now assume C is monic. First let us show that passing to C̄ introduces no new arrows
a → ~u. For suppose we have g−1f : a → ui. By the extension property, there is x with
x ◦ g = uki . We see that g−1f ≈ x ◦ f . We will be done once we also show that there are
no new isomorphisms. Let ψ be an isomorphism; inductively choose ϕi with ϕi ∈ Arr(C),
ϕi ≈ ψi, and i < j ⇒ ϕ(i) < ϕ(j). Hence ψ ≈ ϕ.

5 Topological Fräıssé Classes

The goal of this section is to concretely describe all monic stable Fräıssé categories. Along
the way, we will prove:

Theorem 5.1. Let A,B be countable Fräıssé categories with G(A) ∼= G(B). Then we
have Ā ∼ B̄.

Fix G a closed subgroup of S∞, and let β be a countable (perhaps finite) collection of
open subgroups whose conjugates form a neighborhood basis at the identity. We allow
β to contain duplicates; for short call such a β a G-basis. We define the category C(β)
as follows. We set Ob(C(β)) = β. An arrow U → V is a pair (V, gU), with V ⊆ gUg−1.
We set (W,hV )◦ (V, gU) = (W,hgU); the requirement that V ⊆ gUg−1 ensures that this
is well defined.

Proposition 5.2. C(β) is a countable, monic, stable Fräıssé category.

Proof. If U, V ∈ β, then there is W ∈ β and g ∈ G with g−1Wg ⊆ U ∩ V . Hence
C(β) is directed. If (V1, g1U) and (V2, g2U) are arrows, then pick W ∈ β and g ∈ G with
g−1Wg ⊆ g−11 V1g1∩g−12 V2g2; we see that (W, gg−11 V1)◦(V1, g1U) = (W, gg−12 V2)◦(V2, g2U).
Hence C(β) has amalgamation. As for each U ∈ β there are only countably many left
cosets gU , it follows that C(β) is countable.

Suppose (W,hV )◦(V, g1U) = (W,hV )◦(V, g2U). Then hg1U = hg2U , and g1U = g2U .
Hence C(β) is monic. Lastly, suppose (V, g1U1) is (V, g2U2)-stable. It follows that if
h1g2U2 = h2g2U2, then h1g1U1 = h2g1U1. In particular, we have h−12 h1 ∈ g1U1g

−1
1

whenever h−12 h1 ∈ g2U2g
−1
2 , hence g2U2g

−1
2 ⊆ g1U1g

−1
1 . We see that (V, g1U1) = (V, g2U2)◦

(U2, g
−1
2 g1U1), and C(β) is stable.

We will call a category formed in the above manner a topological Fräıssé class.

Proposition 5.3. Every countable, monic, stable, Fräıssé category is isomorphic to a
topological Fräıssé class.

Proof. Let C be such a category, and let ~u be a Fräıssé sequence. Write G ≡ Aut(~u).
For a ∈ Ob(C) \ {ui : i ∈ ω}, pick an arrow [fa] : a→ ~u arbitrarily. For u ∈ {ui : i ∈ ω},
find the least i such that u = ui, and set [fu] = [uii]. Now for each a ∈ Ob(C), let
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Ua = {ϕ ∈ G : ϕ([fa]) = [fa], and form the G-basis β = {Ua : a ∈ Ob(C)}, allowing
duplicates (so if Ua = Ub for a 6= b, we consider Ua and Ub to be distinct elements of β).

Form the functor ψ : C → C(β) as follows. Set ψ(a) = Ua. For x ∈ Hom(a, b),
set ψ(x) = (Ub, gUa), where gUa = {ϕ ∈ G : ϕ([fa]) = [fb ◦ x]}. Note that if ϕ ∈ Ub,
then ϕ([fb ◦ x]) = [fb ◦ x], so we have Ub ⊆ gUag

−1 as required. If ψ(y) = (Uc, hUb),
then ψ(y) ◦ ψ(x) = (Uc, hgUa); as hgUa = {ϕ ∈ G : ϕ([fa]) = [fc ◦ y ◦ x]}, we have
ψ(y) ◦ ψ(x) = ψ(y ◦ x).

As ψ is certainly a bijection on objects, it only remains to show that it is a bijection
on arrows. Suppose ψ(w) = ψ(x) = (Ub, gUa). Then in particular we have g([fa]) =
[fb ◦ x] = [fb ◦ w]. From monicity, it follows that w = x. Now say (Ub, gUa) is an arrow.
Set [x] = g([fa]), with x ∈ Hom(a, uj). If fb ∈ Hom(b, ui), we may assume i < j. I claim
that x is (uji ◦ fb)-stable. Indeed, suppose p1 ◦ uji ◦ fb = p2 ◦ uji ◦ fb; we may suppose
p` ∈ Hom(uj, uk) for some k. Pick h ∈ G with h([fb]) = [p` ◦ uji ◦ fb]. We see that

there must be ϕ(1), ϕ(2) ∈ hUb with ϕ
(`)
j ≈ p`. But since (Ub, gUa) is an arrow, we have

Ub ⊆ gUag
−1; it follows that ϕ(1)([x]) = ϕ(2)([x]). Hence [p1 ◦x] = [p2 ◦x], so by monicity

p1 ◦ x = p2 ◦ x. By stability, write x = uji ◦ fb ◦ y. Then ψ(y) = (Ub, gUa).

Proof of Theorem 5.1. Let Ā ∼= C(β1) and B̄ ∼= C(β2). Let C = C(β1 ∪ β2).

Corollary 5.4. If G is a closed subgroup of S∞ and β is a G-basis, then G(C(β)) ∼= G.

Proof. Let C be a countable Fräıssé category with G(C) = G. Let γ be a G-basis with
C̄ ∼= C(γ). Then by considering the category C(β ∪ γ), we see that C ∼ C(β).

6 Monoids

A monoid is a category with a single object. Alternatively and equivalently, it is a set
with a binary, associative operation and an identity with respect to that operation. If
M is a monoid and I ⊆M , we say I is a left (right) ideal if I is closed under left (right)
multiplication by elements of M . We say I is a principal left ideal if I = Ms for some
s ∈ M . We can now rephrase the Fräıssé condition in a way that will be convenient for
discussing monoids; a monoid is Fräıssé iff every pair of nonempty principal left ideals
has nonempty intersection. In the literature, this is sometimes called Ore’s condition or
right reversibility [CP]. We will also say left cancellative in place of monic, with right
cancellative defined analogously; a monoid is cancellative if it is both left and right
cancellative.

As applied to monoids, the previous part of the paper seems like a curious black box:
input a countable Fräıssé monoid, and receive as output a possibly quite complicated
topological group. The goal of this section is to characterize the Fräıssé group of a monoid.
As a warmup, let us see that quite often, the Fräıssé group is relatively uninteresting.

Proposition 6.1. Suppose a countable Fräıssé monoid M embeds into a group G and
that M generates G. Then G(M) = G with the discrete topology.

In particular, this is the case iff M is cancellative. This is certainly necessary. If M is
cancellative, then we see that for each g ∈M , 1 is g-stable, and M is the desired group.
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Proof. By passing to M , we may assume M = G. Fix a Fräıssé sequence ~u. First
observe that if we restrict an automorphism ϕ to have ϕ(i) = i for each i ∈ ω, then by
setting ϕ0 = g for some g ∈ G, then ϕi is uniquely determined. This follows from the
constraint ϕi · ui0 = ui0 · ϕ0 and the fact that everything is invertible. Now suppose ϕ
is any automorphism. We want to build an automorphism ψ satisfying the restriction
ψ(i) = i with ϕ ≈ ψ. There is only one possible choice for ψ0, namely ψ0 = (u

ϕ(0)
0 )−1ϕ0.

This uniquely determines each ψk, and we have ϕk = u
ϕ(k)
k ψk, showing that ϕ ≈ ψ.

Now for ϕ, ψ with ϕ(i) = ψ(i) = i, we have ψ0 ◦ ϕ0 = (ψ ◦ ϕ)0, hence algebraically
G(M) ∼= G. To see that G(M) is discrete, suppose an automorphism ϕ fixes the arrow
[u00]. Then ϕ0 = 1G; hence {1G} is open.

As M is always left cancellative, we should look at monoids which are not right
cancellative to find examples where G(M) is quite complicated. Let’s consider the monoid
T of order-preserving, almost onto injections N→ N. T is not right cancellative; in fact,
T = T , but this will not be important in the sequel. We will use N to refer to the unique
object of the category T .

Proposition 6.2. T is a countable Fräıssé monoid.

Proof. That T is countable is immediate. To show that T is Fräıssé, we want to show
that for all s, t ∈ T , there is (u, v) amalgamating (s, t). Define f : N → N as follows (f
will become u ◦ s = v ◦ t).

f(1) = max(s(1), t(1))

f(n+ 1) = f(n) + max(s(n+ 1)− s(n), t(n+ 1)− t(n))

Now define u, v as follows.

u(n) =

{
n if n < s(1)

f(k) + n− s(k) if s(k) ≤ n < s(k + 1)

v(n) =

{
n if n < t(1)

f(k) + n− t(k) if t(k) ≤ n < t(k + 1)

We see that u ◦ s = v ◦ t = f . Furthermore, u and v are both increasing injections.
Since s and t are almost onto, f is almost onto, from which it follows that u and v are
almost onto.

The proof of proposition 6.2 shows us something more general; define

fn(m) =

{
nm if n ≤ m

fn(n) +m− n if n > m.

Then we see that for any t ∈ T , there is n ∈ N and v ∈ T such that fn = v ◦ t. Even
more generally, if fn ∈ Tt and g : N → N is any almost onto increasing injection such
that g(1) ≥ n and g(k)− g(k− 1) ≥ n for k ≤ n, then we likewise have g ∈ Tt. Pursuing
this idea will allow us to concretely construct a Fräıssé sequence in T .
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Enumerate Q\N = {q1, q2, ...}. Set N0 = N, Nk = N∪{q1, ..., qk}. Henceforth we will
refer to the copy of N ∈ Q by N0, using N to refer to the single object of the category T .
We will view the inclusion Nk ↪→ Nk+1 as representing the embedding uk+1

k : 〈Nk+1, <
〉 → 〈Nk+1, <〉 with Ran(uk+1

k ) = Nk. In particular, we can view uk+1
k as an element of T

by putting Nk+1 in bijection with N, and u`k gives the embedding 〈N`, <〉 → 〈N`, <〉 with
Ran(u`k) = Nk. From our above observation, we see that ~u is a Fräıssé sequence. Let
H ≤ Aut(〈Q, <〉) be the subgroup consisting of those automorphisms which almost fix N0

setwise. Endow H with the topology τ , which is generated by the pointwise convergence
topology and the additional open sets UX = {h ∈ H : h(N0) = X}.

Theorem 6.3. G(T ) ∼= (H, τ)

Proof. Much in the way that we can identify Fräıssé sequences of models and model-
theoretic embeddings with a structure (e.g. the random graph), we can identify ~u with
〈Q, <〉 =

⋃
nNn. In this case, an arrow f : N→ ~u is an embedding f of N into 〈Q, <〉 with

Ran(f)4N0 finite. As automorphisms act on arrows, we have Aut(~u) ⊂ H. Conversely,
given h ∈ H, we see that for each i, h(Ni) ⊆ Nj for some j. Set ϕ(i) = j, and pick ϕi ∈ T
such that ϕi : 〈Nj, <〉 → 〈Nj, <〉 has range h(Ni). Noting that the topology is given by
pointwise convergence of arrows N→ ~u, we see that τ is the correct topology.

Using this structural approach, we can describe G(M) for every countable Fräıssé
monoid M . Assume M is left cancellative. Let RM denote the right action structure of
M ; i.e. RM = 〈M, {Rt : t ∈M}〉, where Rt(s) = st. Now the maps Lt : RM → RM with
Lt(s) = ts are model-theoretic embeddings. In particular, Ls ◦Lt = Lst. Furthermore, if
ϕ : RM → RM is any embedding (even any homomorphism), then letting t = ϕ(1), we
have ϕ = Lt. Hence M is the monoid of endomorphisms of RM .

Let ~u be a Fräıssé sequence in M . Form the directed system (Ri, u
i
j), where each Ri

is RM and uij ∈M is viewed as an embedding RM → RM . Let X be the direct limit.
If Y is a discrete space on which M acts on the right, we say that Y is directed if for

all x, y ∈ Y , there is z ∈ Y and s, t ∈M with zs = zt.

Theorem 6.4. The action (X,M) is universal for countable directed actions and ho-
mogeneous: for each x, y ∈ X, there is an automorphism ϕ of (X,M) with ϕ(x) = y.
Furthermore, (X,M) is the unique such action up to isomorphism.

Proof. Seeing as we may view any countable directed action as some direct limit of a
countable directed system, universality follows from the fact that the Fräıssé sequence is
universal for countable sequences from M (see [K]). Homogeneity follows from the fact
that we may associate to x and y the actions xM and yM , each of which is isomorphic
to RM . Hence each of these actions corresponds to an arrow RM → ~u, and hence an
automorphism sending x to y exists by the back and forth property. Uniqueness follows
from uniqueness of the Fräıssé limit.

Corollary 6.5. G(M) ∼= Aut(X,M) with the pointwise convergence topology.

As an application, we will show that for M a countable Fräıssé monoid, G = G(M)
does not have metrizable universal minimal flow, exhibiting a large new class of groups

12



with this property (see [KPT] for a discussion). Form the space (βM)X , where βM is the
Stone-Čech compactification of M . Recall that βM is extremely disconnected; therefore
it suffices to find a minimal flow of G which projects onto an infinite subset of βM .

G acts by homeomorphisms on (βM)X via shift; i.e. g · α(x) = α(g−1(x)). We
need to take some care here as there are two relevant topologies on G; the pointwise
convergence topology which arises from G acting by automorphisms on (X,M), and
the subspace topology inherited from Homeo((βM)X) with the compact-open topology.
While the continuity of G-action on (βM)X would be immediate in the compact-open
topology, we are concerned with the pointwise convergence topology. A base of open sets
of (βM)X is given by sets of the form ((A1, x1), ..., (An, xn)), where xi ∈ X, Ai ⊆ M ,
and this denotes those α ∈ (βM)X for which α(xi) ∈ Ai for each 1 ≤ i ≤ n. So
suppose g · α ∈ ((A1, x1), ..., (An, xn)). As (X,M) is directed, find y such that there
are ti ∈ M with yti = xi. Let U(g−1(y), y) denote the open subset of G consisting of
those h ∈ G for which hg−1(y) = y. Then we see that for any (h, γ) ∈ U(g−1(y), y) ×
((A1, g

−1(x1)), ..., (An, g
−1(xn))), we have h · γ ∈ ((A1, x1), ..., (An, xn)). Therefore G-

action is continuous, and (βM)X is a G-flow.
The next two lemmas together will prove the result. The first shows that the result

holds modulo a condition on the algebraic structure of βM . The second states that we
may restrict our attention to those M where this condition holds.

Lemma 6.6. Let t ∈ M and suppose I ⊂ βM is infinite and minimal with respect to I
being closed and It ⊆ I. Then G has nonmetrizable universal minimal flow.

Proof. First observe that as I is minimal, we have It = I. In particular, R−1t (p) 6= ∅ for
any p ∈ I. By the assumption that I is infinite, we must have tk 6= t` for k 6= `. Find
α ∈ (βM)X with α(x) ∈ I, α(xt) = α(x)t for all x ∈ X. Let Y be a minimal flow of
G · α. Then for any x ∈ X, the projection of Y onto the x-coordinate is I. As I is infinite
and βM is extremely disconnected, I is not metrizable, hence Y is not metrizable.

Lemma 6.7. Let t ∈ M be such that tk 6= t` for k 6= `. Then there is an I as in the
above lemma.

In particular, if M is left cancellative and there is no such t, then M is a group,
G = M , and all infinite countable discrete groups are known to have nonmetrizable
universal minimal flow.

Proof. Identifying βM with the space of ultrafilters on M , we can identify the closed
subsets of βM with filters on M . In particular, if F is a filter on T , then CF = {U : F ⊆
U}, i.e. those ultrafilters extending F . Set T = {1, t, t2, ...}, and consider I ⊆ βT ⊆ βM
minimal with respect to being closed and with It ⊆ I. Let I = CF . Since It = I by
minimality, we must have R−1t (B) ∈ F for each B ∈ F . Let Ft denote the filter with
base {Bt : B ∈ F}. Now we have CF t ⊆ CFt ⊆ CF , hence Ft = F . Now it only remains
to observe that this implies {tm, tm+k, tm+2k, ...} 6∈ F , which in turn implies that there are
at least k distinct ultrafilters extending F for each k ∈ N, showing that I is infinite.
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